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Abstract

Pattern recognition in video is a challenging task because of the multitude of spatio-temporal

variations that occur in different videos capturing the exact same event. While traditional pattern-theoretic

approaches account for the spatial changes that occur due tolighting and pose, very little has been done

to address the effect of temporal rate changes in the executions of an event. In this paper, we provide

a systematic model-based approach to learn the nature of such temporal variations (time warps) while

simultaneously allowing for the spatial variations in the descriptors. We illustrate our approach for the

problem of action recognition and provide experimental justification for the importance of accounting

for rate variations in action recognition.

The model is composed of anominal activity trajectoryand afunction spacecapturing the probabil-

ity distribution of activity-specific time warping transformations. We use the square-root parameterization

of time warps to derive geodesics, distance measures and probability distributions on the space of

time warping functions. We then design a Bayesian algorithmwhich treats the execution rate function

as a nuisance variable and integrates it out using Monte Carlo sampling, to generate estimates of

class posteriors. This approach allows us to learn the spaceof time warps for each activity while

simultaneously capturing other intra- and inter-class variations. Next, we discuss a special case of this

approach which assumes a uniform distribution on the space of time warping functions and show how

computationally efficient inference algorithms may be derived for this special case. We discuss the
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relative advantages and disadvantages of both approaches and show their efficacy using experiments on

gait-based person identification and activity recognition.

I. I NTRODUCTION

Pattern Recognition in videos is gaining momentum in recent years because of its applicability

to several problems such as gait-based person identification, activity modeling and recognition,

video-based face recognition etc. Pattern recognition in video streams is often a very challenging

task because of the multitude of spatiotemporal changes that can occur in a video capturing the

exact same event. Several algorithms and methods account for the spatial variations due to

changes in lighting, pose and appearance of individual objects. Nevertheless, very little work

has been done to account for the complex temporal variationsthat occur in videos. For example,

in activity recognition, different instances of the same activity may consist of varying relative

speeds at which the actions are executed, in addition to other intra- and inter- person variabilities.

Most existing algorithms for activity recognition are not very robust to intra- and inter-personal

changes of the same activity, and are sensitive to warping ofthe temporal axis due to variations

in speed profile.

A. Prior Work in Activity Recognition:

One of the earliest investigations about the nature of humanmovement was the study done by

photographers Etienne Jules Marey and Eadweard Muybridge [1] in the 1850s. They captured

photographs of several moving subjects that revealed various interesting aspects of human and

animal locomotion. The classic Moving Light Display (MLD) experiment of Johansson [2]

provided a great impetus to the study and analysis of human motion perception in the field of

neuroscience. This then paved the way for mathematical modeling of human action and automatic

recognition, which naturally fell into the purview of computer vision.

Activity recognition has attracted tremendous interest inrecent years because of its potential

in applications such as surveillance, security, and human body animation. Activity recognition

has been a research area since the 90’s. The reader can refer to the different surveys [3][4][5]

on activity recognition for a detailed review of previous research in this area. The important

issues that arise in an action recognition system are discussed in detail in [3]. Broadly, action

recognition has either been studied using probabilistic graphical models such as hidden Markov

models [6][7][8][9] and dynamic Bayesian networks [10][11][12][13][14]. Since our approach

is an attempt to account for the variabilities that affect action recognition, we provide a more
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indepth coverage of prior work in this area. Recently, [15] has explicitly enumerated the three

most important sources that contribute to variabilities inhuman activity videos as a) Viewpoint

change, b) Anthropometry of actors and c) Execution rate.

1) Viewpoint and Anthropometry:Typical approaches for human action recognition begin

by extracting features from a single frame or a small set of frames. These features could be

simple motion-based features such as optical flow [16], and point trajectories [17], or simple

silhouette-based features such as binary background subtracted images [18] or shape features

[19]. Irrespective of the actual feature used for representation, it becomes important to ensure that

these features are then invariant to viewpoint of the cameraand the body stature of the subject

(anthropometry). Most approaches use simple scaling basedlaws to account for anthropometry

while more sophisticated approaches including affine invariance are required in order to account

for view invariance. Since the focus of this paper is on modeling temporal rate variations we

refer the reader to some recent methods on tackling viewpoint variations [17][20][21][22][23]

and anthropometry variations [24].

2) Execution Rate:Inspite of this large body of work in accounting for viewpoint and

anthropometry invariance very little has been done to account for the variability in the execution

rate of the actors. Results on gait-based person identification shown in [25] indicate that it is very

important to take into account the temporal variations in the person’s gait. In [26], we showed that

accounting for execution rate enhances recognition performance for action recognition. Typical

approaches for accounting for variations in execution rateare either directly based on the dynamic

time warping (DTW) algorithm [27] or some variation of this algorithm [26]. A method for

computing an average shape for a set of dynamic shapes is provided in [28]. A method to learn

the best class of time-warping transformations for a given classification problem is proposed in

[29].

In this paper, we study the variations due to execution rate in a systematic way. We model

an action sequence as a composition of these two sources of variability - variability on the

feature space and variability due to execution rate. By keeping the model on the feature space

completely independent of the model on the space of execution rates, we are then able to exploit

any of the above mentioned viewpoint invariant features in our method. Therefore, as more

sophisticated features become available our model will be able to exploit the characteristics of

those features while retaining the ability to deal with variations in execution rate. We explicitly

model execution rates and derive a Baysian classification algorithm for action recognition. If

the chosen features are viewpoint and anthropometry invariant, then the resulting algorithm
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becomes invariant to all the three significant modes of variations - viewpoint, anthropometry

and execution rate. Moreover, since the model developed is general and not necessarly restricted

to action recognition, we believe that similar models may beused for other applications that

require rate-invariance.

Motivation: Consider the INRIA iXmas activity recognition dataset. Shownin Figure 1(L)

is the distribution of the number of frames in different executions of the same activity for four

distinct activities. Figure 1(L) clearly shows that for thesame activity the rate of execution

and consequently the number of frames during the execution varies significantly. Moreover, in

most realistic scenarios this temporal warping might also be inherently non-linear making simple

resampling methods ineffective. This implies that for uncontrolled scenarios the variations due

to temporal warpings could be even more significant. Ignoring this temporal warping might lead

to structural inconsistencies apart from providing poor recognition performance. The sequence

of images shown in the first two rows of Figure 1(R) correspond to two different instances of the

same individual performing the same activity. There is an obvious temporal warping between the

two sequences. If this temporal warping is ignored, the distance between these two sequences

will be large, leading to incorrect matching. Moreover, if we are looking for some statistical

description of the activity like an average sequence, ignoring the temporal warping could lead to

structural inconsistencies like the presence of four arms and two heads in the average sequence

as shown in the third row of Figure 1(R). If we do account for temporal warping then such

inconsistencies are avoided and the distance between the two sequences is rightly small. The

fourth row shows a typical average sequence obtained by our method after accounting for time

warping.

Why should the distribution of time-warps be class-specific?To answer this, let us consider

the activity of ‘jumping’. The subject may in principle speed up certain portions of the activity

relative to the others. But, during the actual moments the subject has no contact with the ground,

the only external forces on the subject are those from gravitation and therefore, much as he/she

might attempt to, he/she will not be able to change the execution speed during such times.

There are thus physical, aesthetic and structural constraints that force different activities to have

different warping functions. The constraints themselves vary with each activity and therefore the

eventual probability distribution on warping functions varies from one activity to another.

B. Contributions of the paper

• We propose a systematic generative model for activities that accounts for variations in
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c) Get Up
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d) Wave Hands
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Average
Sequence
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Average
Normal

Seq2
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and their normal and warped average sequences.
(L) Histogram of number of frames (R) Two sequences with differing rates of executions

Fig. 1. (L) Histogram of the number of frames in different executions of the same action in the INRIA iXmas dataset. The

histograms for4 different activities are shown. (a) Cross Arms (b) Sit Down (c) Get Up (d) Wave hands. (R) Row 1, Row 2:

Two instances of the same activity. Row 3: A simple average sequence. Row 4:Average Sequence after accounting for

time warps.

speed profile of an activity. The model is composed of anominal activity trajectoryand a

probability distribution on thefunction spaceof temporal warpings capturing the permissible

activity-specific time warping transformations. We then derive a Bayesian solution for a

rate-invariant classification of activities.

• We highlight a special case of this approach where we assume auniform distribution on a

convex subset of the warping functions and derive computationally efficient algorithms for

learning and inference.

• While the preliminary conference publication [26] dealt only with uniform distribution on

the space of time-warps here in this paper we deal with the learning and inference problems

for a much more general class of distributions. Further, while [26] directly works with the

time warping functions, we show how one can efficiently impose a Riemannian metric and

perform exact and efficient statistical inference efficiently and correctly using the square-root

density form of the time warp functions.

C. Outline of the paper

We begin by providing a formal statement of the problem addressed in this paper in Section

II. Section III describes the geometry of the space of time warps and presents algorithms for

computing geodesics, distances and prior probability distributions on this space. Section IV
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describes how these tools may be used in order to learn the model parameters. Section V describes

the special case of the model when the probability distribution on the space of time warpings

is uniform. In Sections VI and VII, we discuss how both the models developed earlier can be

used in a Bayesian recognition framework in order to perform activity analysis, recognition and

activity-based person identification. Finally, in SectionVIII, we present conclusions and future

research directions.

II. PROBLEM STATEMENT

Let C1, C2, ..., CM beM classes (in our caseM different activity labels). Here we wish to

tackle two tasks while accounting for time-warping: 1. Given several instances of an activity,

we would like to build a model for that activity and 2. Given a test sequence, we would like to

classify the sequence to one of the models in the database.

A. Feature for representation

Observations of an activity are typically obtained using video cameras and they are in the

form of video frames. Raw videos are not appropriate featuresfor representation. In principle,

the feature chosen to describe the action units must have physical significance and one must be

able to directly identify the relationship between the features extracted and the basic human pose.

For the problem of activity recognition, 3-D joint angles would be ideal features. Unfortunately,

estimating features like 3-D joint angles from images is difficult and unreliable. So researchers

have used several other features for describing the action units [17][28][30][31]. Since the

USF gait database consists of monocular video, we use the shape of the silhouette (along with

the appropriate Procrustes distance ) as a feature [32] for the gait-based person identification

experiments. The INRIA iXmas dataset contains synchronizedvideos from multiple views and

therefore allows us to use 3D Fourier based shape features described in [33]. We refer the

interested reader to [34][32] and [33] for details about theshape feature and the 3D circular

FFT feature respectively.

For now let us assume that for each frame of the video, an appropriate feature has been

extracted and that the video data has now been converted intoa feature sequence given by

f 1, f 2, ..., for frames1, 2, ... respectively. We will useF to denote the feature space associated

with the chosen feature.

January 28, 2009 DRAFT



7

B. Model for warping functions

Let γ be a diffeomorphism (A diffeomorphism is a smooth, invertible function with a smooth

inverse.) from[0, 1] to itself with γ(0) = 0 and γ(1) = 1. Also, let Γ be the set of all such

functions. We will use elements ofΓ to denote time warping functions. Our model for an activity

consists of an average activity sequence given bya : [0, 1] → F , a parameterized trajectory on

the feature space. Any time-warped realization of this activity is then obtained using:

r(t) = a(γ(t)), γ ∈ Γ . (1)

We note in passing thatΓ is a group with composition as the group operation and the function

γ(s) = s as the identity element. Equation (1) actually defines an action of Γ on F [0,1], the

space of all continuous activities. In our model, the variability associated withγ in each class

will be modeled using a distributionPγ on Γ. For the convenience of analysis and computation

( refer Section III ), we prefer to work withψ = +
√
γ̇ instead ofγ directly. There is a bijection

betweenγ andψ and the probability models onψ directly relate to equivalent models onγ.

Thus, we will introduce probability distributionsPψ on the set of allψs, for each activity class.

The parameters of this model area(t), the nominal activity trajectory, andPψ, the probability

distribution on square-root representations of time warping functions. In general, the nominal

activity trajectorya(t) can also be chosen to be random. But, here, we restrict our analysis to

cases where, the nominal activity trajectorya(t) is deterministic but unknown. We will consider

parametric forms of densities forPψ and reduce the problem of learningPψ to one of learning

the parameters of the distributionPψ. In particular, we highlight (in Section V) a special-case

of a uniform distribution on the space of time warpings. Thisparticular special-case appeared

as a preliminary conference paper [26].

Physical Significance of the Model:The nominal activity trajectory, a(t) and the probability

distribution on the space of time-warps,Pψ together capture all the possible realizations of

the activity and provide the description of the activity under different variations. In general,

the nominal activity trajectories of two different activities will be vastly different. The nominal

activity trajectory for ‘walking’ would consist of key postures like heel-strike, toe-off, mid-stance

etc., while that of ‘sit down’ would consist of the followingactions - bend knee, lower body, settle

on chair and rest back on backrest. The distribution of activity-specific temporal warpingsPψ,

represents the space of all permissible time-warping transformations for each activity. By learning

this space, we are able to ‘interpolate’ appropriately between training sequences. Suppose there

is a test sequence that is within this space, but was not a partof the training sequences. Most
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template sequence-based recognition techniques tend to misclassify such test sequences. Learning

the function space of an activity provides our algorithm with the generalization power necessary

to correctly classify such test sequences. Moreover, by formally learning this warping space in a

class specific manner, we also obtain better discriminativepower than other heuristic techniques

for handling time-warping. The model M={a, Pψ} represents afunction spaceof activities whose

elements are composed of functionsa(γ(t)), ∀ γ ∈ Γ.

C. Problems

Here, we state informal descriptions of the various problems we wish to tackle.

1) The Learning Problem:Given N labeled realizationsr1, r2, r3, ...rN , of an activity, we

would like to learn the model for this activity. This is equivalent to learning the nominal activity

trajectorya(t) and the distribution on the warping parameters given byPψ.

2) The Classification Problem:Suppose we have models forM different activities{ai, P i
ψ}Mi=1.

Given a test sequencer(t), we would like to classify this test sequence as belonging toone of

theM models.

3) Clustering Problem:Given several realizations fromK different activities with no class

labeling, we would like to cluster these sequences intoK distinct clusters such that sequences

within the same cluster are maximally similar while sequences in different clusters are dissim-

ilar. Moreover, unlike traditional clustering algorithmsthis similarity is invariant to changes in

exectution rate of the action since the model for each cluster is built to be rate-invariant.

III. D IFFERENTIAL GEOMETRIC TOOLS ON THE SPACE OF TIME-WARPING FUNCTIONS

The model for a random observation of an activity class consists of a(γ(t)), wherea is the

average of that class andγ is a warping function. In order to classify activities at variable

execution rates, we need to analyze the warping functions asrandom functions. However, the

space of warping functions is not a vector space and that rules out the use of classical functional

analysis for this task. One alternative is to utilize the differential geometry of this space, impose

a Riemannian structure on it, and use appropriate tools to perform calculus and statistics of

warping functions. In particular, we can compute distancesbetween warping functions, estimate

sample means for given warping functions, and impose parametric and non-parametric probability

distributions on the space of warping functions.

The next question is: What Riemannian structure on the space ofwarping functions is suitable

and convenient for activity recognition? The Fisher-Rao metric is often used for analyzing
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probability density functions. (The Cramer-Rao lower bound on estimation of parameters is

derived using this metric.) One major reason for its popularity is that it is invariant to arbitrary

warpings of the functions involved. In other words, under this metric the distance between any

two warping functionsγ1(t) and γ2(t) is same as that betweenγ1(γ(t)) and γ2(γ(t)) for any

arbitrary warping functionγ(t). This point is important in activity recognition because, as we

will point out in Section IV-D, the representation of an activity model is not unique, i.e. there

is no canonical choice ofγ for representing activity models. The choice of Fisher-Rao metric

implies that the resulting distances are same irrespectiveof the baseline time axis chosen to

represent activity models.

The Fisher-Rao metric, when applied to different mathematical representations ofγ, i.e. γ, γ̇,

log γ̇, or
√
γ̇, takes different forms. Interestingly, in the case ofψ ≡ √

γ̇, this metric simplifies

to the familiar and convenientL2 metric [35], [36]. Furthermore, the space of all warping

functions, represented by their square-root density forms, under the Fisher-Rao metric, becomes

a unit sphere. This is because

‖ψ‖2 =

∫ 1

0

|ψ(t)|2dt =

∫ 1

0

|γ̇(t)|dt = γ(1) − γ(0) = 1 .

For these two reasons – invariance to arbitrary time scalings and the spherical nature of the

resulting space, we choose the square-root density form to represent and analyze variability

associated with the warping functions.

Let the space of all square-root density forms be given by

Ψ = {ψ : [0, 1] → R|ψ ≥ 0,

∫ 1

0

ψ2(t)dt = 1} . (2)

This is the positive orthant of a unit hypersphere in the Hilbert space of all square-integrable

functions on[0, 1]. Let Tψ(Ψ) be the tangent space toΨ at any given pointψ. Then, for any

v1 andv2 in Tψ(Ψ), the Fisher-Rao metric is given by

〈v1, v2〉 =

∫ 1

0

v1(t)v2(t)dt. (3)

SinceΨ is a sphere, its geometry is well known and we can directly useknown expressions for

tools such as geodesics, exponential maps, and inverse exponential maps onΨ. Consequently, the

algorithms for computing sample statistics, defining probability density functions, and generating

inferences also become straightforward.

We begin by describing some elements of differential geometry of Ψ.
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A. Geometry ofΨ

One way to quantify the differences between two warping functions is to compute the distance

between their corresponding representations inΨ. This distance is given by the length of a

geodesic, the shortest path connecting those two points inΨ. We know that the geodesics on

a sphere are the great circles and the geodesic distance is simply the length of the shorter arc

connecting the two points on a great circle. Given two warping functionsγ1 and γ2, and their

square-root density forms,ψ1 andψ2 in Ψ, the geodesic distance between them onΨ is given

by

d(ψ1, ψ2) = cos−1(〈ψ1, ψ2〉), (4)

where〈ψ1, ψ2〉 =
∫ 1

0
ψ1(t)ψ2(t)dt.

The geodesic path itself can also be computed rather simply.Taking the radial projection of the

chord joining pointsψ1 andψ2 onto the unit sphere results in the geodesic. The chord joiningψ1

andψ2 is given by(1−s)ψ1 +sψ2 wheres is the parameter that identifies various points on this

chord. The radial distance of a point on this chord is given bys2 +(1−s)2 +2s(1−s)(〈ψ1, ψ2〉).
Therefore, we can analytically write the geodesic connecting ψ1 andψ2 as:X : [0, 1] → Ψ,

X(s) =
(1 − s)ψ1 + sψ2

s2 + (1 − s)2 + 2s(1 − s)(〈ψ1, ψ2〉)
,

such thatX(0) = ψ1 andX(1) = ψ2. Another way to specify a geodesic path inΨ is by giving

a starting pointψ ∈ Ψ and a starting directionv ∈ Tψ(Ψ):

X(s) = cos(s‖v‖)ψ + sin(s‖v‖) v

‖v‖ , (5)

where‖v‖ =
√

∫ 1

0
v(t)2dt.

One use of geodesics is to define and compute the exponential map fromTψ1
(ψ) to ψ. It is

simply the value reached ats = 1 by a geodesic that starts fromψ in the directionv and moves

at a constant speed. We can evaluate the exponential map using:

expψ(v) = cos(‖v‖)ψ + sin(‖v‖) v

‖v‖ . (6)

Similarly the inverse of the exponential mapexp−1
ψ1

(ψ2) = v ∈ Tψ1
(ψ) can also be computed

analytically using

u = ψ2 − 〈ψ2, ψ1〉ψ1 (7)

v =
u cos−1(〈ψ1, ψ2〉)

√

〈u, u〉
. (8)
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B. Statistical Analysis onΨ

With the geometry ofΨ as specified above, let us derive some tools for statistical analysis

of data. Given a number of observed warping functions, we will estimate the sample mean

and covariance, use these estimates to define a ”wrapped-Gaussian” density function and derive

Bayesian classification algorithms using these densities aspriors.

To compute the sample means of elements ofΨ, we will use the notion of Karcher mean [37]

that has been used frequently for defining means on nonlinearmanifolds. Suppose, we haven

different square-root density forms, given byψ1, ψ2, ...ψn. Then, their Karcher mean̄ψ is defined

as the element that minimizes the sum of squares of geodesic distances:

ψ̄ = arg min
ψ∈Ψ

n
∑

i=1

d(ψ, ψi)
2 (9)

where,d is the geodesic distance defined in (4). Note that the Karchermean may not be unique

and can instead be a set of elements. A commonly used approachfor finding a Karcher mean

is to use the gradients and this is where the exponential map and its inverse are needed. The

iterative update to the current value of mean is given by:

ψ̄ → expψ̄(ǫv), where v =
1

n

n
∑

i=1

exp−1
ψ̄

(ψi) (10)

and whereǫ is usually0.5.

The next step is to define and compute a sample covariance for the observedψs. The key idea

here is to use the fact that the tangent spaceTψ̄(Ψ) is a vector space. Using a finite-dimensional

approximation, sayV ⊂ Tψ̄(Ψ), we can use the classical multivariate calculus for this purpose.

In practice, we obtain a natural restriction whenv is observed at a finite number, sayT , of times

leading to an observation{v(ti)|i = 1, 2, . . . , T}. With a slight abuse of notation, we will denote

this vector byv ∈ R
T . The resulting sample covariance matrix is given by:Σ̄ = 1

n−1

∑n

i=1 viv
T
i ,

where eachvi is a T -dimensional sample of the functionexp−1
ψ̄
ψi. Note that by definition, the

mean ofvis should be zero. In cases where the number of samplesn is smaller thanT , one can

apply an additional dimension-reduction tool to work on a smaller space. For instance, we can

use the singular value decomposition (SVD) of the sample covariance matrixΣ̄ and retain only

the topm significant singular values and the corresponding singularvectors. In such cases, the

covariance matrix is indirectly stored usingλ1, λ2, ...λm singular values and their corresponding

singular vectorsu1, u2, ...um.

Next, we define a “wrapped-Gaussian” probability density onΨ. We say “wrapped-Gaussian”

becauseΨ is a non-Euclidean space and it is not possible to define a Gaussian density here. We
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follow the tangent PCA (TPCA) approach [38] for defining probability densities on nonlinear

manifolds. In this approach, one defines a Gaussian probability density on a tangent space of

the manifold and then projects it onto the manifold using theexponential map. However, in our

case we need only the samples from the eventual density function and the explicit functional

form of that projected density is not needed. In fact, we willapply one more transformation

in taking the samples onΨ to obtain samples onΓ. For a meanµ and covarianceΣ, we can

define a normal density functionN(v|µ,Σ) on the elements ofV ⊂ Tµ(Ψ). In case the data is

available in the form of prior samples, we can use the sample means and covariances to define

this density on the spaceV . The exponential map:expψ̄ : Tψ̄(Ψ) → Ψ maps this density to the

spherical space of square-root forms, and the mappingψ 7→ γ(t) =
∫ t

0
|ψ(τ)|2dτ takes it further

to the space of warping functions. The exponential map results in wrapping the Gaussian density

on the tangent space onto the sphere and therefore the namewrapped-Gaussian. We will denote

the resulting densities onΨ andΓ by Pψ andPγ, respectively.

For a Bayesian classification of activities, as described later in this paper, we will need to

estimate the posterior probability of different classes given the observed data. In this calculation,

the warping function is considered a nuisance variable thatneeds to be integrated out. Using a

Monte Carlo approach, we will generate samples from the prioron γ and use those samples to

approximate the nuisance integral. Thus, we have a need to generate samples from the class-

specific priorsPγ on Γ. This, in turn, requires sampling from the probability density Pψ, which

is accomplished as follows. Let̄ψ and Σ̄ be the sample mean and the sample covariance of the

square-root forms observed in a particular class. Assume that the covariance is stored in the

form of m singular valuesλis and corresponding singular vectorsuis. In such cases, a random

sample from the modelPψ is given as

ψ ∼ expψ̄(v) where v ∼
m

∑

i=1

zi
√

λiui and zi ∼ N(0, 1) (11)

This random sample can then be converted into a warping function using the partial integration

ψ 7→ γ such thatγ(t) =
∫ t

0
|ψ(τ)|2dτ .

Example Consider the example shown in Figure 2. Figure 2(a) shows 30 sample time-warping

functions from each of three different classes (color coded). The corresponding square-root

density forms are shown in 2(b) and can be computed usingψ =
√
γ̇. For each class using the

samples of the square-root density forms we can compute the Karcher mean and the covariance

as in Equation 9. The Karcher means are shown in 2(d). The meantime-warping functions for

each class obtained by partially integrating the Karcher means are shown in 2(c). The model
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(c) Corresponding mean warping 
functions for the Karcher means
shown in (d)

Time
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Functions
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Fig. 2. Figure is Color coded - Each color represents a different class(a) Random samples of time-warping functions belonging

to 3 different classes (color coded) (b) Corresponding samples of square-root density forms (c) Mean time-warping function for

each class computed by partial integration of the class-specific Karchermean (d) Class specific Karcher mean computed using

the samples shown in (b) (e) Random samples generated from the storedmodel (f) Random samples ofψ generated from the

stored Karcher means and covariance.

for each class of time-warping functions is encoded in the form of the corresponding Karcher

means and covariances. Now one can generate random samples from this model as described

above. Shown in 2(f) are sample square-root density forms generated using the model parameters

for each class (i.e., the Karcher mean and covariances). As before the corresponding time-

warping functions maybe computed via partial integration and are shown in 2(e). We encourage

the interested reader to download sample code either from the supplemental material or from

http://www.cfar.umd.edu/∼vashok/Documents/TIPCode Supplemental.zip to generate some of

the figures and results shown in this example.

C. Global Speed of activity

We have restricted our attention to time-warping functionsfrom [0, 1] to itself, i.e the functions

that do not contract or dilate the full duration of the activity. We claim that this is not restrictive,

since any other time-warping transformation can be decomposed into two parts: a global linear
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scaling of the temporal axis and the non-linear time-warping functions that we have addressed

so far. The effect of such a linear global temporal scaling isidentical to the effect of changing

the rate of sampling.

Let a(t), for 0 ≤ t ≤ Ta, be a vector valued function of time. Letb(t), for 0 ≤ t ≤ Tb, be a

time-warped version ofa(t), with the warping function given byw(t), i.e.,b(t) = a(w(t)), w(t) :

[0, Tb] → [0, Ta]. Noww(t) can be decomposed asw(t) = Taγ(t/Tb) whereγ : [0, 1] → [0, 1] i.e.,

a global linear dilation (or contraction) and a non-linear warpingγ. Without loss of generality

we will use the word time-warping transformation to synonymously denote the non-linear time

warping function given byγ. In all our experiments we have first identified the global temporal

scaling factor by identifying the start and stop instants ofeach activity. The identification of the

start and stop instants of each activity is also done automatically by template matching. Once

the global temporal scaling factor is found, each realization of the activity is temporally dilated

or contracted linearly so that the total duration of the activity is a constant for all realizations

of the activity.

IV. L EARNING AND CLASSIFICATION ALGORITHMS

Given N realizationsr1, r2, r3, ...rN , of an activity, we need to learn the parameters of the

model for this activity. This amounts to learning the nominal activity trajectorya(t) and the

probability distributionPψ.

A. EstimatingPψ givena(t)

Let us assume that the nominal activity trajectorya(t) is known. Now we need to estimate

the parameters of the warping distribution which is given byPψ. In order to learnPψ, we first

warp each of the observed realizations of the activity to theknown nominal activity trajectory

given bya(t). This warping can be performed using the DTW algorithm. The DTW algorithm

provides us with corresponding warping functionsγi(t) such that
∫ 1

0
‖ri(t) − a(γi(t))‖2dt is

minimized. Then, we can computeψis usingψi =
√
γ̇i.

Now, we have several samplesψ1, ψ2, ... to estimate the distributionPψ. Assuming a ”wrapped-

Gaussian” distribution onΨ, this amounts to estimating the sample mean and the sample

covariance of the observedψis. As described in Section III-B, we can define and compute

the Karcher mean of givenψis using the exponential and the inverse exponential maps. The

covariance is obtained similarly by restricting to aT -dimensional approximationV of the vector
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spaceTψ̄(Ψ). Using SVD of observations inV , one ends up with the singular valuesλ1, λ2, ...λm

and their corresponding singular vectorsu1, u2, ...um.

Thus, given the nominal activity trajectorya(t), we can estimate the parameters of the warping

distributionPψ, namely its Karcher mean̄ψK and its covariance stored indirectly usingm singular

valuesλ1, λ2, ...λm and corresponding singular vectorsu1, u2, ...um.

B. Estimatinga(t) assuming known warping functions

For the given observationsr1, r2, . . . , of an activity, assume that the corresponding warping

functions γ1, γ2, . . . , are also given. Then, we can estimate the nominal or average activity

trajectorya(t) using

ā(t) =
1

N

N
∑

i=1

ri(γ
−1
i (t)) (12)

C. Iteratively estimatinga(t) andPψ

GivenN realizationsr1, r2, r3, ...rN , of the same activity, we would like to learn the parameters

of the model for this activity. We do this by iteratively estimatingPψ and refining our estimate

of the nominal activity trajectorȳa(t) using the steps described in the previous two sections.

We first initialize the nominal activity trajectory to one ofthe realizations sayainit(t) = r1(t).

Then we estimatePψ using the method described in Section IV-A. We then refine theestimate

of the nominal activity trajectory using the method described in Section IV-B. These two steps

are iterated till convergence. In practice, we find that the iterations converge very quickly (within

4 or 5 iterations).

D. Uniqueness of the Model parameters

The model parameters given bya(t) andPψ ≈ {ψ̄K ,Σψ} are not unique. Two different sets of

model parametersM1 = {a1(t), Pψ1
} andM2 = {a2(t), Pψ2

}, could lead to the same distribution

on the observation space. That is, the two models may lead to the same distribution on the space

of all activity realizations. This could happen if the corresponding nominal activity trajectory

and the distribution on the space of warping transformations are related as

a2(t) = a1(γ(t)) ψ̄1 =
√

˙̄γ1 ψ̄2 =
√

˙̄γ2 γ̄2(t) = γ̄1(γ̄
−1(t)) Σ2 = Σ1 (13)

When the conditions listed in (13) are satisfied, we notice that a2(γ̄2(t)) = a1(γ̄1(t)), i.e., the

mode of the activity trajectories is the same for both models. Moreover, since the covariance
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matrices for the two models are identical (Σ1 = Σ2), this means that samples for either of these

models will have identical distributions and would therefore be indistinguishable. In practice this

means that there is an equivalence class of models such that any two models from the same

equivalence class are indistinguishable. The conditions for belonging to the same equivalence

class are those stated in (13). While performing classification and inference based on these

model parameters it becomes essential to maintain uniqueness of model parameters. Therefore,

once we learn the model parameters we always choose a single canonical representation for

each equivalence class. Note that the choice of this canonical representation does not affect the

performance of the algorithm at all as long as this choice is consistent. We choose the model

with γ̄K(t) = t, such that the Karcher mean of the warping distribution corresponds to simple

linear warping and the covariance matrix of the warping transformations encodes all the non-

linearities in the warping distributions. The canonical model parameters are unique and can be

directly used for classification and inference.

E. Generating activity samples from the model

The model for an activity is given by the nominal activity trajectory a(t) and the distribution

on warping transformations given byPψ. We can use this model to generate random samples

from the model. We first generate random samplesψ1, ψ2, .....ψM from the warping distribution

Pψ as described in Section III-B. The corresponding time warp for eachψ is computed. Let

γ1, γ2, ...γM be the corresponding time warps. Then realizations from themodel may be drawn

as

rj(t) = a(γj(t)) + w(t) where w ∽ N(0,Σ). (14)

F. Classification Algorithm

Let us assume that we haveK different modelsM1,M2, ...MK given by their appropriate

nominal activity trajectoriesa1, a2, ...aK and correspondingPψ given byP 1
ψ, P

2
ψ, ..., P

K
ψ . Given

a test sequencer(t), we would like to classifyr(t) to one of theK possible classes. This

classification task can be accomplished using MAP estimation, i.e.,

ID = arg max
i=1,2,..K

P (Mi|r) = argi=1,2,..K maxP (r|Mi)P (Mi). (15)

The likelihoodP (r|Mi) can be computed as,

P (r|Mi) =

∫

ψ

P (r|Mi, ψ)P (ψ|Mi)dψ where P (ψ|Mi) = P i
ψ. (16)
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This integral can be estimated using Monte Carlo sampling methods. We drawN samples from

the modelMi as described in Section IV-E. Using these samples we estimate the likelihood

P (r|Mi) as

P (r|Mi) =
1

N

j=N
∑

j=1

P (r|ai, ψj) where ψj ∽ P (ψ) = P i
ψ (17)

In order to compute the summation described above, we need a model for computing the

conditional likelihoodP (r|Mi, ψj). The conditional warp probability is inversely proportional to

the squared distance between the warped nominal activity trajectory and the test sequence, i.e.,

P (r|Mi, ψj) = e−αD(r,ai(γj)) whereD(r, ai(γj)) =

∫ 1

0

(r(t) − ai(γj(t)))
2dt (18)

andα is a suitably chosen constant. As the number of samplesN increases the accuracy of the

approximation improves. One can also improve the accuracy of the approximation by performing

importance sampling [39]. Let us assume that the proposal distribution from which the samples

of the ψ are drawn is given byG(ψ). Then we drawN samples ofψ from G and the integral

is approximated as

P (r|Mi) =
1

N

j=N
∑

j=1

P (r|Mi, ψj)
P (ψj|Mi)

G(ψj)
where ψj ∽ G(ψ). (19)

In practice, using importance sampling significantly improves the accuracy of the approximation

when using a finite number of samples. The effectiveness of importance sampling also critically

depends upon the proposal distribution. The proposal distribution or the importance distribution

should ideally be as close to the posterior distribution we wish to approximate. In practice,

we first estimate the mode of this posterior by computing the best warping transformation

between the nominal activity trajectory of the model (ai(t)) and the test sequence (r(t)). We

set the mean of the importance distribution to be this warping transformation while letting the

covariance of the importance distribution to be the same as the covariance of the model. We

have experimentally found that this choice of importance distribution enables us to effectively

approximate the integrals using Monte Carlo methods with a reasonable number of random

samples.

V. FUNCTION SPACE OFTIME-WARPS

The model described in the previous sections represents an activity using a nominal activity

trajectorya(t) and a probability distribution on the space of time warpingsPψ. There are two

inherent difficulties in practical implementations of sucha model inspite of its rigour. Firstly,
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since the model attemps to learn a probability distributionon the space of permissible time-

warping functions, the algorithm for learning thisPψ requires a reasonable number of sample

realizations of each action. In the presence of very few samples, the learning algorithm might

lead to underfitting of the data. Moreover, as inference using this model is done using Monte

Carlo methods, the algorithms for inference are computationally expensive.

Suppose we relax the assumption about learning the probability distribution of permissible

time-warps and instead attempt to learn a subset in the time-warping space and assume that the

probability distribution of time-warps is uniform within the learnt subset. Each activity can now

be represented by using a nominal activity trajectory givenby a(t) andW , the set containing all

the time warping transformations permissible for that activity. Each realization of an activity is

given by a trajectoryr(t) = a(f(t)) wheref ∈ W . Such a model is a special case of learningPψ

where, we assume that the probability distribution is uniform on a subsetW ∈ Γ in the space

of time-warpings. The advantage of using such a model where the probability distribution is

assumed uniform is that both the learning and the inference algorithms become simple dynamic

programming problems when we constrain the setW to be a convex set.

A. Activity specific time-warping space (W )

Even thoughΓ represents the space of all plausible time-warping transformations, every

individual activity may only be able to access a subsetW of the candidate functions inΓ

because of the physical constraints imposed on the actor andthe activity. We can then model

the activity using a uniform distribution on this subsetW . Then learning the parameters of the

uniform distribution boils down to learning this subsetW . Below, we discuss and visualize some

properties of this activity specific time warping spaceW .

1) W is a subset ofΓ, i.e., W ⊂ Γ.

2) γ(t) = t is a candidate function inW , i.e., γ(t) = t ∈ W . This represents no time warping.

3) It is reasonable to assume thatW is convex, i.e.,∀ γ1, γ2 ∈ W and α ∈ (0, 1), γ = αγ1 + (1 − α)γ2 ∈
W . Since the derivative is a linear operator, this means that if the rate of execution of some action unit can

be speeded up by factorsα1 andα2 then it can also be speeded up by any factorβ in betweenα1 andα2.

This is not just reasonable but in fact desirable.

This implies thatW can be bounded above and below by functionsu, l ∈ W such that

u(t) ≥ t ≥ l(t) ∀t ∈ (0, 1) and u ≥ γ ≥ l ∀γ ∈ W (20)

whereγ1 ≥ γ2 =⇒ γ1(t) ≥ γ2(t) ∀t ∈ (0, 1). So, we can now index any such convex spaceW

by the functionsu and l and call itWul and learningW is essentially the same as learning the
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upper and lower bounding functionsu and l.

B. Symmetric representation of an Activity Model

As described for the ”wrapped-Gaussian” distribution, therepresentation of the activity model

given byM1 = {a(t),Wul} is not unique. Letunew(t) = f−1(u(t)) and lnew(t) = f−1(l(t))

and let f be a member function inWul. Consider the new modelM2 ={b(t),Wunewlnew
}=

{a(f(t)),Wunewlnew
}. For every realization of the modelM1, i.e., a(γ1(t)) there exists a cor-

responding realization of the modelM2 given by b(f−1(γ1(t))). Therefore the two modelsM1

andM2 are equivalent. As before, we will resolve this ambiguity byspecifying a synchronizing

time such that the average of all the warping functions inWs is the identity warping function.

The symmetricrepresentation of the model is such thatunew(t)− t = t− lnew(t). Therefore the

activity specific warping space can be represented asWs = Wunewlnew
wheres(t) = unew(t)−t =

t− lnew(t), represents the extent of possible temporal warpings. Thissymmetric representation

of the model is unique, i.e., ifM1 = {a1(t),Ws1} andM2 = {a2(t),Ws2}, thenM1 = M2 ⇐⇒
a1 = a2 ands1 = s2.

Given a non-symmetric representation of the model, i.e.,M1 = {a(t),Wul}, we still need to

determine a time-warping functionf such that upper and lower bounding functions of the new

model are symmetric about the diagonal. This is achieved as

unew(t) − t = t− lnew(t) (21)

(Substituting forunew(t) and applying theu−1 operator)

⇒ f(t) = {2u−1(t) − f−1(l(u−1(t)))}−1

This implicit function equation can be solved by fixed point iterations asf(i)(t) = {2u−1(t) −
f−1

(i−1)(l(u
−1(t)))}−1, wheref(i) represents the approximation off in theith iteration. We initialize

the iteration withf(0)(t) = u(t)+l(t)
2

. We observe that it converges within very few iterations with

such an initialization. Once we have obtained this symmetrizing time warpf then any non-

symmetric model parametersM1 = {a(t),Wul} can be transformed to its symmetric (unique)

counterpart asM = {b(t),Ws}, whereb(t) = a(f(t)) and s(t) = unew(t) − t = t − lnew(t) =

f−1(u(t)) − t.
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C. Learning Model Parameters

Learning the model parameters can be done as before by iterating between the two unknowns

( a(t) andPγ ). Learning the nominal activity trajectorya(t) is done as described in Section

IV-B. The only difference between earlier and now is during the estimation of the parameters

Pψ. Earlier we computed the Karcher mean and the covariance ofPψ for the wrapped-Gaussian

distribution, here since the parameters ofPγ are given by the upper and lower bounding functions

we need to estimate them. Given an estimate of the activity trajectorya(t) and corresponding

warping functionsγi(t) for each realization, the the upper and the lower bounding functions for

the activity specific time-warping set can be estimated as

û(t) = max
i=1,2,...N

γi(t), ∀t ∈ (0, 1) and l̂(t) = min
i=1,2,...N

γi(t), ∀t ∈ (0, 1). (22)

Since eachγi is constrained to be monotonously increasing and the end points are fixed, it is easy

to see that the estimateŝu(t) and l̂(t) also inherit these properties. Thus the estimated modelM̂

is given byM̂ = {b̂(t),Wul}. This model parameters correspond to the non-symmetric version

of the model and can be easily transformed to the equivalent symmetric version of the model

using the procedure described in Section V-B.

D. Classification using the model

The primary advantage of using the uniform distribution on the space of time-warping func-

tions instead of learning a class-specific probability density function is that the classification

algorithm becomes computationally efficient. While classification in the general case is dependent

on Monte-carlo methods, we show how a simple dynamic programming based algorithm will

suffice for classification using the uniform distribution based model. Suppose we haveM different

activity models given byMi = {ai(t),Wsi
} for i = 1, ..M . Given a test sequenceh(t), the activity

recognition problem is one of identifying the model that generated the test sequenceh(t). We

do this in two steps. Firstly, assuming that the test sequence h(t) is generated from the model

Mi, we estimate the best warping transformationf̂i from Wsi
that would warpai to h, i.e.,

f̂i = min
f∈Wsi

dist(h(t), ai(f(t))) (23)

Î = arg min
i=1,...M

dist(h(t), ai(f̂i(t))) (24)

Activity recognition is performed by minimizing the warping error between the nominal activity

trajectory and the test sequence. Note that the search of warping functions is performed only

over the corresponding activity specific warping set. The above-mentioned intuitive idea for
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activity recognition can be easily implemented by a simple variation of the DTW. In the DTW

algorithm, instead of arbitrarily limiting the warping function to lie within some window (typical

choices are uniform window and parallelogram window), we replace the window constraints by

the upper and lower bounds for the warping function that we have learnt for each model. Thus,

the DTW algorithm with the window width being given byu(t) = s(t) + t and l(t) = t− s(t)

computes the distance that is being minimized in (24).

Î = min
i=1,...M

DTW (ai, h, s) (25)

where,DTW (ai, h, s) stands for the implementation of the DTW algorithm with the warping

window constraints given byu(t) = s(t) + t and l(t) = t− s(t).

VI. EXPERIMENTS

We tested the algorithms on three different datasets - UMD Common Activities dataset,

the INRIA iXmas dataset and the USF gait dataset. We used a warpped-Gaussian probability

distribution forPψ with its parameters stored using a set of tangent plane vectors uψ and their

covariance matrixΣψ. We denote the experimental results using this algorithm asPGauss in the

results. We also implemented the uniform distribution on the space of time-warping functions

using dynamic programming and performed maximum likelihood inference using this model.

We denote the results using this method asPUnif in the results.

A. Common Activities Dataset

We used the UMD common activities dataset [26], a dataset of common activities to perform

preliminary experiments to validate our model. The datasetconsists of10 activities and10

different instances of each activity. We partition the dataset into 10 disjoint sets each containing

1 instance of every activity. In order to test the recognition for each set, we first learn the model

parameters from the remaining nine sets and then perform recognition for the test sequences.

We repeat the process for each of the 10 sets. Thus we ensure that there is no overlap between

the training set and the test sequences. Figure 3 shows the 10X 100 similarity matrix for using

the function space algorithm with the uniform distributionon the space of temporal warps.

Each column corresponds to a different test sequence while each row corresponds to a different

activity. The strongly block diagonal nature of the similarity matrix indicates that the recognition

algorithm performs well. In fact, on this database we obtained 100% recognition using both our

algorithms.
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(f)  Kick                   (g) Bend to the side    (h) Throw      (i) Turn around     (j) Talk on Cellphone
(a) Pick up Object    (b) Jog in Place          (c) Push        (d) Squat             (e) Wave                  

(a) (b) (c) (e) (f) (g) (h) (j)(i)(d)

Fig. 3. 10 X 100 Similarity matrix of 100 sequences and 10 different activities using the function space algorithm.

B. INRIA iXmas dataset

The INRIA multiple-camera multiple video database of the PERCEPTION group consists of

11 daily-live motions performed each3 times by10 actors. The actors freely change position and

orientation. Every execution of the activity is done at a different rate. For this dataset, we extract

16 × 16 × 16 circular FFT features as described in [33]. Since the actorswere free to perform

the actions the rate at which these actions were performed varied significantly as was shown

in Figure 1. So most approaches that cannot handle this vast temporal rate variations, instead

model the entire segment as a single motion history volume [33]. Instead, we build a time series

of the circular FFT features described in [33]. This allows us to learn the nature of the temporal

rate changes between various executions of an action. Usingthese features, we performed a

recognition experiment on the provided data similar to those done in [33]. For the recognition

experiment, we used only one segment for each activity whichbest represented that activity as

in [40]. The recognition results are summarized in table I. We used16 × 16 × 16 circular FFT

features in all our experiments here while the results reported in [33] used32×32×32 features.

The confusion matrix showing confusion between the activities using both the wrapped-Gaussian

and the dynamic programming based uniform distribution model are shown in Table II. Note that

uniform distribution based model described in Section V is significantly more computationally

efficient compared to the Monte-Carlo based inference using the wrapped-Gaussian distribution

on the tangent space of warp space.

C. USF Gait Database

Note on gait-based person identificationSince the model for learning the function space

time-warpings is not explicitly dependent on the choice of features, one could potentially use

the same model to learn individual specific function spaces in order to perform activity-based

person identification. The only difference would be that we would choose a feature that is
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Activity PCA[33] Mahalanobis

[33]

LDA [33] System

Distance

[41]

PUnif

(This

paper)

PGauss

(This

paper)

1 Check Watch 53.33 73.33 76.67 93.33 100 93.33

2 Cross Arms 23.33 86.67 100 100 100 100

3 Scratch Head 46.67 86.67 80 76.67 100 100

4 Sit Down 66.67 93.33 96.67 93.33 96.67 100

5 Get Up 83.33 93.33 93.33 86.67 96.67 100

6 Turn Around 80 96.67 96.67 100 100 100

7 Walk 90 100 100 100 100 100

8 Wave Hand 50 70 73.33 93.33 96.67 96.67

9 Punch 70 86.67 83.33 93.33 83.33 90

10 Kick 50 86.67 90 100 80 100

11 Pick Up 60 90 86.67 96.67 90 100

Average 61.21 87.57 88.78 93.93 94.85 98.18

TABLE I

COMPARISON OF VIEW INVARIANT RECOGNITION OF ACTIVITIES IN THE INRIA DATASET USING OUR

APPROACHES(PUnif AND PGauss) WITH THE APPROACHES PROPOSED IN[33] AND [41].

Motifs 1 2 3 4 5 6 7 8 9 10 11
Sit Down 30(28) 0(0) 0(1) 0(1) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

Get Up 0(0) 30(30) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

Turn Around 0(0) 0(0) 30(30) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

Check Watch 1(0) 0(0) 0(0) 29(30) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

Cross Arms 1(0) 0(0) 0(0) 0(0) 29(30) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

Scratch Head 0(0) 0(0) 0(0) 0(0) 0(0) 30(30) 0(0) 0(0) 0(0) 0(0) 0(0)

Walk 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 30(30) 0(0) 0(0) 0(0) 0(0)

Wave Hand 1(1) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 29(29) 0(0) 0(0) 0(0)

Punch 3(1) 0(1) 0(0) 0(0) 0(0) 0(0) 0(0) 1(1) 25(27) 0(0) 0(0)

Kick 5(0) 0(0) 0(0) 0(0) 1(0) 0(0) 0(0) 0(0) 0(0) 24(30) 0(0)

Pick Up 1(0) 0(0) 0(0) 0(0) 2(0) 0(0) 0(0) 0(0) 0(0) 0(0) 27(30)

TABLE II

CONFUSION MATRIX USINGPGauss(OUTSIDE PARENTHESIS ANDPUnif (INSIDE PARANTHESIS) ON THE INRIA

DATASET.

person-specific (e.g., silhouette). The nominal activity trajectory would be individual specific

in this case. Various external conditions (like surface, shoe) induce systematic time-warping

variations within the gait signatures of each individual. The function space of temporal warpings

for each individual amounts to learning the class of person specific warping functions. By learning

the function space of these variations we are able to accountfor the effects of such external
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conditions. This will allow the same basic approach to be applied for both action recognition

and activity based person identification by the use of appropriate features.

In order to compare the performance of our algorithm with thecurrent state of the art

algorithms, we also performed a gait-based person identification experiment on the publicly

available USF gait database [30]. The USF database consistsof 71 people in the Gallery. Various

covariates like camera position, shoe type, surface and time were varied in a controlled manner to

design a set of challenge experiments[30]. We performed a round-robin recognition experiment

in which one of the challenge sets was used as test while the other seven were used as training

examples. The process was repeated for each of the seven challenge sets on which results

have been reported. Table III1 shows the identification rates of our algorithm with a uniform

distribution on the space of warps (PUnif ), our algorithm with a wrapped Gaussian distribution

on the tangent space of warps with shape as a feature and with binary image feature (PGauss

andPGaussIm). For comparison the table also shows the baseline algorithm [30], simple DTW

on shape features [32] and the image-based HMM [31] algorithm on the USF dataset for the 7

probes A-G. Since most of these other algorithms could not account for the systematic variations

in time-warping for each class the recognition experiment they performed was not round robin

but rather used only one sample per class for learning. Therefore, to ensure a fair comparison,

we also implemented a round-robin experiment using the linear warping (PLW ).

The average performance of our algorithmsPUnif and PGauss are better than all the other

algorithms that use the same feature, (DTW/HMM (Shape)[32] and Linear warpingPLW ) and is

also better than the baseline[30] and HMM[31] algorithms that use the image as a feature. The

image based pHMM algorithm [18] outperforms our algorithm for many probes. One reason for

this is that the image as a feature performs better than shapeas a feature for the USF dataset. But,

it is a computationally very intensive feature (of the orderof number of pixels) and consequently

leads to algorithms that are very slow. Therefore, we preferto use the shape as a feature. Inspite

of this obvious handicap, the performance of our algorithm is comparable to the image based

pHMM algorithm for many probes. The improvement in performance while using binary image as

a feature is shown in the last column (PGaussIm). The experimental results presented here clearly

show that using multiple training samples per class and learning the distribution of their time

1Note that the experimental results reported in this table contain varying amounts of training data. While columns 2-6 (Baseline

- pHMM) used only the gallery sequences for training, the results reported in columns 7-10 (PLW - PGaussIm) used all the

probes except the test probe during training.
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TABLE III

COMPARISON OFIDENTIFICATION RATES ON THEUSF DATASET. NOTE THAT THE EXPERIMENTAL RESULTS REPORTED IN

THIS TABLE CONTAIN VARYING AMOUNTS OF TRAINING DATA . WHILE COLUMNS 2-6 (BASELINE - PHMM) USED ONLY

THE GALLERY SEQUENCES FOR TRAINING, THE RESULTS REPORTED IN COLUMNS7-10 (PLW - PGaussIm) USED ALL THE

PROBES EXCEPT THE TEST PROBE DURING TRAINING.

Pr- Base- DTW HMM HMM pHMM PLW PUnif PGauss PGaussIm

obe line Shape Shape Image [18]

Avg. 42 42 41 50 65 51.5 59 59 64

A 79 81 80 96 85 68 70 78 82

B 66 74 72 86 89 51 68 68 78

C 56 52 56 74 72 51 81 82 76

D 29 29 22 32 57 53 40 50 48

E 24 20 20 28 66 46 64 51 54

F 30 19 20 17 46 50 37 42 56

G 10 19 19 21 41 42 53 40 55

warps makes significant improvement to gait recognition results. While most algorithms based

on learning from a single sample led to overfitting and therefore performed much better when the

gallery was similar to the probe (Probe A-C), they also performed very poorly when the gallery

and the probes were significantly different. But, since our algorithm has good generalization

ability ( becasue we learn the distribution of time warps ) the performance of our algorithm did

not suffer from overfitting and therefore did not drop as muchwhen moving from probes A-C

to Probles D-G.

The importance of using multiple training samples for the problem of gait-based human identi-

fication was also recently pointed out in [42]. In order to tackle the lack of training samples, they

combine real templates with synthetic templates generatedby simulating silhouette distortion.

They then develop a statistical spatio-temporal gait representation called Gait Energy Image, that

they use in order to perform classification. They show that the generalizing ability afforded by

learning from multiple training samples helps gait recognition performance significantly. In our

experiments, we used only the available real sequences for training. It might be an interesting

alternative to use synthetic training sequences as presented in [42] in cases where the number of

available training samples is limited. Recently, an extension of Principal Component analysis for

multi-dimensional data called MPCA (Multilinear PrincipalComponent Analysis) was proposed

[43]. Such tensor based algorithms for dealing with multi-dimensional data (such as silhouette
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sequences) are an important ingredient in performing formal statistical estimation for tensor

data. Nevertheless, in its application to gait-based person identification, such algorithms are still

limited in their ability to tackle non-linear time warpingssince these must first be normalized in a

preprocessing step before the gait sequences are convertedinto tensor data. In this regard, it might

be an interesting avenue of further study to combine the non-linear time-warp normalization

procedure presented in this paper with statistical tensor analysis approach presented in [43].

VII. OTHER APPLICATIONS

A. Clustering Activity Sequences

Algorithm for Clustering There are several scenarios where one requires a clusteringalgo-

rithm to be rate-invariant. Under such scenarios it becomesreasonable to use the rate-invariant

model for activities described above as the basis for clustering. When rate-invariance is not

a desirable property traditional clustering algorithms such as K-nearest neighbour might be

reasonable choices for clustering. We performed clustering experiments on the UMD common

activities dataset and the USF gait database using the fast and computationally efficient uniform

distribution version of the algorithm denoted byPUnif . The clustering algorithm, based on

expectation maximization (EM) is very similar to the Lloyd-Max algorithm [44] and can be

used to organize a database of sequences for efficient retrieval. Let us assume that we know

the number of clusters,N and the cluster centersc1, c2, ...cN . Then, each of the sequences in

the database can be associated with one ofN clusters. This can be done using a maximum-

likelihood approach as described earlier in (25). This forms the Maximization step of the EM

algorithm. The Expectation step of the algorithm involves recomputing the new cluster centers

from cluster memberships evaluated during the Maximization step. We iterate these2 steps until

convergence. In all our experiments, we initialized the cluster centers randomly.

Clustering on Common Activities DatasetWe performed a clustering experiment on the100

activity sequences collected as a part of the Common Activities dataset. We chose the number

of clustersN to be10 since there were10 different activities. If clustering were perfect, then the

100 activity sequences would be clustered into10 different clusters, each cluster containing10

sequences that correspond to that particular activity. But in reality, clustering would be imperfect

and some of the100 sequences would be misaligned in the wrong cluster. We repeated the

clustering experiment several (about 50) times, with a random initialization of cluster centers

during each trial. On an average, the algorithm converged inabout10 iterations and about92%
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of the sequences were clustered correctly. Even during someadverse initializations the clustering

performance was greater that80%.

B. Organizing a Large Database of Activities

With the decreasing cost of storage, the size of activity databases is increasing rapidly. For

example, the complete USF gait database [30] consists of about 122 classes and a total of more

than1000 sequences. As the size of the database increases, the numberof ‘distance’ computations

that must be performed on every query also increases linearly with the size of the database. This

poses a significant bottleneck for practical activity recognition systems. We show that organizing

the database of sequences using the clustering algorithm described in Section VII-A decreases this

computational burden significantly. The price paid is a small decrease in recognition performance.

We organize the database of activities in the form of a dendrogram as shown in Figure 4.

At each level of the dendrogram the number of branches (B) was set to3. The number of

levels to which the dendrogram is ‘grown’ determines the trade-off between computation and

accuracy. As the number of levels is increased, the number of‘distance’ computations that must

be performed before finding the class membership of a given test sequence decreases. Therefore,

the computational burden of the algorithm also decreases. But this might introduce a decrease

in classification performance. When the dendrogram is fully grown (i.e., when each leaf of the

dendrogram represents one activity), there will belogBN , levels and thereforeBlogBN ‘distance

computations’. Let us consider the USF database which consists of122 subjects and a total of

1870 sequences. A nearest neighbour classifier on this database must perform1870 distance

computations in order to classify a new test sequence. But if we assume that we organize the

database in the form of a ‘fully grown dendrogram’, with eachleaf node representing each of

the 122 individuals, then one would just have to perform aboutBlogBN = 3 ∗ log3122 ≈ 14

‘distance computations’. This is a very significant computational saving.

We performed an experiment to evaluate the efficiency of organizing the database on a subset

of the USF database as in Section VI-C. In our experiments, we grow the dendrogram upto2

levels. We measure efficiency of organization (η) as a ratio of the recognition rate before and

after organization.
η = 100 ∗ Identification rate after organization

Identification rate before organization
(26)

The efficiencyη is strongly related to clustering performance and it is reasonable to expect the

efficiencyη to increase with better clustering. Table IV shows the efficiency of organization for

the various probes in the USF dataset. On this data, the dendrogram organization of the database
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Level 1

Level 2

Level 3

Fig. 4. Dendrogram for organizing an activity database

reduced the computational time by a factor of about30. This means that the processing time for

large databases will be reduced from the order of days to a matter of hours. For such significant

reduction in processing time, the Table IV shows that the decrease in recognition performance

is not drastic.

TABLE IV

EFFICIENCY OFORGANIZATION ON THE USF DATASET

Probe A B C D E F G Avg

η 76 81 84 100 82 100 95 89

VIII. S UMMARY AND CONCLUSIONS

In this paper, we address an important but often neglected problem in modeling an activity, that

of temporal warping of the activity trajectories. Our modelfor an activity describes each activity

using a nominal activity trajectory and a probability distribution on the space of permissible

temporal warpings. We discuss the case of a parameteric wrapped-Gaussian distribution on the

tangent space of time-warps and derive Monte Carlo sampling-based Bayesian algorithm for

classification. We then discuss the spacial case of a convex uniform distribution on the space

of time-warps and show that this special case allows us to derive computationally efficient

algorithms for a slight decrease in modeling efficieny and classification performance. Finally,

we present several experimental results on publicly available action recognition and gait-based

person identification datasets.
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